AN EXPANSION OF THE EV SYSTEM By W. F. Lindsey NASA Langley Research Center Langley Station, Hampton, Va. Presented at the 10th Annual Technical Symposium of The Society of Photo-Optical Instrument Engineers | GPO PRICE \$ | |----------------------| | CFSTI PRICE(S) \$ | | Hard copy (HC) / 100 | | Microfiche (MF) | | ff 653 July 65 | San Francisco, California August 16-20, 1965 | <u> </u> | 166 31929 | | |----------|-------------------------------|------------| | ž | (ACCESSION NUMBER) | (тнри) | | ē. | 13 | l | | Ė | (PAGES) | (CODE) | | Z | TM- 257747 | | | | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) | ### AN EXPANSION OF THE EV SYSTEM # By W. F. Lindsey NASA Langley Research Center #### SUMMARY 3/929 The exposure value system or additive value system has been expanded to include filter factors and transmittance. In addition, the equations for photoflash and electronic flash photography are converted into a form compatible with the EV system. The photographic factors are presented in tabular form together with their corresponding values in the additive value system in 25-percent steps or quarter stops to permit an acceptable solution to be obtained more readily. ### INTRODUCTION In the utilization of photography in research, unusual conditions are encountered that in some cases range from making exposures of about 0.01 second of objects having brightness levels of the order of 100 times brighter than a beach scene, to other unrelated situations. Generally for these conditions a correct exposure for a given time and film is determined experimentally and it is often required to transpose these settings to another one involving changes in film and exposure time. It appeared that this transposition could be accomplished more rapidly and with less restriction on the variation of the variables involved if an additive system such as the exposure value (or light value) system could be used. This application of the exposure value system however required that the system be extended to high brightness level, and expanded to include filter factors. Exposure values especially in tabular form (refs. 1 and 2) have been in steps of 1 or one stop. A minimum of four photographic factors are involved in the evaluation of an exposure which when determined from tables of 1-stop interval could introduce noticeable error. It was desirable therefore that the values be provided in 25-percent steps or quarter stops to permit an acceptable solution to be obtained more readily. The initial study in 1960 produced numerical values in 0.25 increment of exposure for each of the following photographic factors: f/number, exposure time, film speed, object brightness, and filter factor. Since then the analysis has been expanded to include the factors involved in photoflash and electronic flash photography. This paper presents the derivation of the equations relating the photographic factors for both basic photography and flash photography. These equations are converted into an additive value system that is a duplicate of or is compatible with the exposure value system. Tabulated values are presented of the photographic factors and their corresponding values in the additive system which permit the application of the expanded system to photographic problems within ranges wherein the reciprocity effects are approximately constant. #### SYMBOLS - A_v aperture value, $f = 2^{A_v/2}$ - b brightness of object (subject), candles/ft² - B_v brightness value, $b = 0.3515 \times 2^{B_v}$ - c transmittance factor, ratio of incident light to transmitted light - $C_{\mathbf{v}}$ transmittance value, $C = 2^{-C_{\mathbf{v}}}$ - d diameter of lens, or free aperture, ft - D distance from flash to object (subject), ft - D_v distance value, $D = 2^{D_v/2}$ - E_V exposure values (also EV), $E_V = A_V + T_V = B_V + S_V$ - f f/number, l/d - F light flux output of source, lumens - F_V flash value of photoflash bulb, $L = 12.5 \times 2^{F_V}$ - G guide number for flash, $G = f \times D$ - i image distance or lens to film distance, ft - k a constant - l focal length of lens - Le lumen-second output of electronic flash - Ip lumen-seconds output of photoflash bulbs - L_V $\;$ light value, interchangeable with $\;E_V$ in popular usage, also LVS - N_{V} the numerical value expressed in the additive or EV system that is derived from any photographic factor, $N_{V}=0$ for t=1 ($T_{V}=0$), f=1 ($A_{V}=0$), s=3 ($S_{V}=0$), etc. - O object distance from lens, ft - Pi area of image, sq ft - Ps area of object or subject, sq ft - Q beam candle power seconds output of electronic flash - Q_v electronic flash value, $Q = 5 \times 2^{Q_v}$ - r reflectivity of object or subject (used as 17.7%) - s film speed ASA rating, $s = \frac{k}{Exposure}$ - S_V speed value of film (often denoted by the superscript °), $s = 3.125 \times 2^{S_V}$ - t exposure time, seconds - T reciprocal of exposure time, 1/t - T_V exposure time value, $T = 2^{T_V}$ - W reflector factor = Illuminance with reflector Illuminance without reflector - x filter factor - X_v filter value, $x = 2^{X_v}$ # Subscript: o numerical value of a photometric factor for which $N_{\rm V}=0$ or for which its contribution to the exposure value is zero #### DERIVATIONS In the application of the exposure value system to cameras and exposure meters, an EV number is determined by a combination of exposure time and the f/number of the lens. A light value or exposure value is also determined by a combination of object brightness and film speed. For a successful exposure the two exposure values must be equal; therefore, the basic photometric relation between the four photographic factors is needed before the contribution of each factor to the exposure value can be determined and the system expanded. The presentation of the derivations will in themselves indicate limitations on the application of the system, as well as provide a foundation for future expansion. #### Basic Photometric Relation An object or surface of uniform luminance b (candles/ft 2) having an area P_s is located on and normal to the optical axis of a perfect lens of diameter d at a distance O from the lens (with linear dimensions in feet). The illuminance on the lens is $$\frac{bP_s}{o^2}$$ lumens/ft². The luminous flux passing through the lens is $\frac{bP_s}{c^2} \frac{\pi d^2}{4}$ lumens. From geometric optics the object and image areas are related by $P_{\rm S}i^2 = P_{\rm i}0^2$ where i is the image to lens distance and is approximately equal to the focal length of the lens. i $\approx l$ but f = l/d then i $\approx fd$. The intensity of illumination in the image on the film is $\frac{\pi}{4} \frac{b}{r^2}$ lumens/ft² If the illumination is incident upon the photographic film at the image plane for a time t seconds, the film exposure is the product of the intensity of illumination and the duration of the exposure. Exposure = $\frac{\pi bt}{4f^2}$ foot candle seconds. The ASA (American Standards Association) speed rating of the film s by definition is inversely proportional to the exposure or $$s = \frac{k_1 r^2}{bt}$$ The graduations of the dials on exposure meters used for computing exposure, as well as the calibrations of the meters, are based on this equation. When t is in seconds, s is the effective ASA speed rating and b is in candlec/ft² the value of the constant k_1 is about 1.05 with variations in practice ranging from 1.0 to 1.1. The differences however do not constitute any significant effect upon exposure. A value of about 1.1 will be used herein in order to retain compatibility with the tables of references 1 and 2 on incident light and have a reflectivity approximately that of the standard gray card (about 18%). The basic photometric equation is or 1.1 $$f^2 = bts$$ 1.1 $f^2 = bs$ (1) The effective ASA rating depends upon reciprocity and in some applications can be affected by differences between the spectral response of the film and the spectrum of the luminance of the object. The Exposure Value or Light-Value System ### General Photography The system is designated in various ways on exposure meters and on cameras as EV, LVS, EV-LVS, Light-Value. An EV number for a camera is fixed by any combination of exposure time t and f/number for which $Tf^2 = \text{constant.}$ On exposure meters for a given film speed the brightness also defines a value which is sometimes called the light value. The numerical value depends on the product of brightness and film speed (b \times s). The "value system" will be referred to herein as the EV system for simplicity, and a particular exposure value or light value will be denoted as E_V . An analysis of the EV system shows that $$Tr^2 = 2^{E_V}$$ (2) so that $Tf^2 = 1$ for $E_v = 0$. Datum or base values were determined for T, f, s, and b corresponding to $N_V=0$ (also $E_V=0$) and designated by the subscript o which, combined with equations (1) and (2), becomes $$T_0 f_0^2 = 0.91b_0 s_0 = 1$$ The values for $N_V = 0$ (also $E_V = 0$) are $$T_0 = 1$$, $f_0 = 1$, $b_0 = 0.35$, $s_0 = 3.125$ The corresponding values given in references 1 and 2 for exposure time and film speed are 1 second and ASA of 3 which are in agreement. The derived value for $b_{\rm O}$ from reference 2 is 0.3125. Since $T_0 f_0^2 = 1$ and $T f^2 = 2^E v$ then $\frac{T}{T_0} \times \frac{f^2}{f_0} = 2^E v$. Now E_v can be resolved into the individual components that correspond to the separate photometric factors as $$T/T_0 = 2^T v$$ and $f^2/f_0^2 = 2^A v$ $2^E v = 2^T v \times 2^A v = 2^T v^{+A} v$ $E_V = T_V + A_V$ Similarly $$b/b_0 = 2^B v$$ and $s/s_0 = 2^S v$ $$b/b_0 \times s/s_0 = T/T_0 \times f^2/f_0^2 = 2^B v \times 2^S v$$ hence $$E_{\mathbf{v}} = T_{\mathbf{v}} + A_{\mathbf{v}} = B_{\mathbf{v}} + S_{\mathbf{v}} \tag{3}$$ These permit the EV system to be extended in range and to be evaluated in smaller steps than are usually available. Sometimes it is desirable to include filter factor \mathbf{x} , and the transmittance of other elements in the optical path $\ \mathbf{c}$. The basic equation becomes $$KTf^2x = bsc$$ for $$N_V = 0$$ $x_O = 1$ $c_O = 1.0$ or percent/100 $x/x_O = 2^{X_V}$ $c/c_O = 2^{-C_V}$ and $$E_v = A_v + T_v + X_v = B_v + S_v - C_v$$ (4) # Photoflash Photography Consider a light source of $\mbox{\ F}$ lumens illuminating an object at a distance of $\mbox{\ D}$ feet The intensity of the source is $F/4\pi$ candles. The illuminance on the object is $F/4\pi D^2$ foot candles. The luminance of the object having a reflectivity of r is rF/ $4\pi D^2$ lumens/ft² and b = rF/ $4\pi^2 D^2$ candles/ft². With r=17.7% and using a reflector behind the lamp that increases the illuminance on the object by a factor W the luminance becomes $$b = WF/223D^2$$ Substituting in the basic photometric equation (1) $1.1f^2 = bts$ gives $f^2D^2 = WFts/257$. The total output of a photoflash bulb is expressed in lumen seconds $\, L_{\rm p}.$ When the exposure time of the shutter is 1/30 second or longer as in open flash, the actual exposure time is determined by the duration of the flash (excluding FP type bulbs). Then $\, L_{\rm p} = Ft \,$ and $\, f^2 D^2 = W L_{\rm p} s/257 \,.$ The guide number of flash bulbs G is specified by manufacturers of the bulbs as a function of film speed s, and is by definition $$G = f \times D$$ Thus $$G^2 = f^2 D^2 = 0.0039 WL_p s$$ A compilation of values of G, L_p , and s recommended by manufacturers of photoflash bulbs for 6- to 7-inch polished reflectors produced an empirical value 0.025 for 0.0039W. A recent publication (ref. 3) gave the value as 0.005W with W varying from four to seven, depending on the (polished) reflector and flashbulb combination. For efficient reflectors the relation will be $$G^2 = f^2 D^2 = 0.025 L_{ps}$$ (5) This equation can be resolved into a form compatible with the EV system as follows: Since $f_0^2 = 1$ and $s_0 = 3.12$ at $N_v = 0$. Let $D_0^2 = 1$. Then $G_0^2 = 1$ and $L_{po} = 12.5$ lumen-seconds. Now $(G/G_Q)^2 = 2^G v$, $(D/D_Q)^2 = 2^D v$ and $L_p/L_{po} = 2^F v$. Since $(G/G_0)^2 = (f/f_0)^2 \times (D/D_0)^2 = L_p/L_{po} \times s/s_0$ $2^{G_V} = 2^{A_V} \times 2^{D_V} = 2^Fv \times 2^{S_V}$. Hence $$G_{V} = A_{V} + D_{V} = F_{V} + S_{V}$$ (6) The basic value assigned $L_{\rm O}$ ($F_{\rm V}$ = 0) is for open flash onto an average subject. The usual recommendations for subjects reflecting more or less light are to decrease the aperture 1/2 stop for light subjects and increase the aperture 1/2 stop for dark subjects. On the EV scales this correction becomes: For light subjects - add 0.5 to F_v or G_v . For dark subjects - deduct 0.5 to F_v or G_v . Open-flash requires that the entire film frame be exposed for 1/30 of a second or greater for any leaf-type shutter at M or X synchronization settings. Focal-plane shutters pose problems that can vary depending upon the design of the shutter and are consequently not included in this general discussion. For shutters other than focal-plane types, shorter exposures than the open-flash can be obtained with the M-delay shutter for which the shutter opening is delayed about 14 milliseconds after contact is made for the flash bulb. Some M designated shutters can vary from the 14 ms delay by design. The recommended guide numbers for flash bulbs vary with exposure time of M-shutters as well as with film speed, the variations can be simplified for the EV or additive value system as approximate corrections as follows to be deducted from F_{v} : t $$1/30$$ $1/60$ $1/125$ $1/250$ $\Delta F_{\rm V}$ 0 0.5 1.0 1.5 # Electronic Flash The light output of an electronic flash unit is expressed in lumen-seconds $L_{\rm e}$ or in beam candle power seconds Q. The latter unit is usually abbreviated as BCPS and its symbol used herein is Q. The electronic flash light output differs from the lumen-seconds of a photoflash bulb $L_{\rm p}$ in that Q or $L_{\rm e}$ is directed and not approximately spherically distributed as is $L_{\rm p}$. Also Q or $L_{\rm e}$ include the reflector factor W used in the photoflash derivation. The derivation of the photometric equation for guide number G parallels the photoflash lamp derivation, and produces these results: $$\frac{1.1f^2D^2}{s} = \frac{r}{4\pi^2} WI_p = \frac{r}{4\pi^2} L_e = \frac{r}{\pi} Q$$ The guide number for the electronic flash is: $$G^2 = f^2D^2 = 0.0041L_{es} = 0.051Q_{s}$$ In actual practice and in accordance with recommendations of various film and flash unit manufacturers these become $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2\pi} \frac{1}{2\pi}$ $$G^2 = f^2D^2 = 0.0064L_{es} = 0.064Qs$$ (7) Reference 3 gives $G^2 = 0.063Qs$ while reference 4 gives $G^2 = (0.067 \text{ to } 0.040)Qs$. The electronic flash equation can be reduced to an additive form compatible to the EV system. For $$N_V = 0$$, $G_O = 1$ and $s_O = 3.125$ $0.06 \frac{1}{4} Q_O \times 3.125 = 1$ $$Q_0 = 5.0$$ BCPS and $$Q/Q_0 = 2^Q v$$ Hence $$G_{v} = A_{v} + D_{v} = Q_{v} + S_{v} \tag{8}$$ It is also obvious from the equation that in practice $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$ $$Q = 0.1L_{e}$$ so that lumen-seconds can easily be converted into $\ensuremath{\mathsf{BCPS}}$. The watt-second rating given for electronic flash units is usually the power input. The output Q will depend on the overall efficiency. The overall efficiency has wide variations, 1 watt-second can produce from 10 to 38 beam candle power seconds in production units. ### APPLICATIONS Base values or datums for each of the photographic factors denoted by the subscript o were determined such that the numerical contribution of that factor to the exposure value or the additive system value was zero and for which it was specified that $N_{\rm V}$ was zero. The choice of $N_{\rm V}=0$ for the datum permits one column in a table with the heading $N_{\rm V}$ to contain the additive values for each and every photographic factor included in the table. In the derivations it was specified that: $$T = T_0 \times 2^T v$$, $f^2 = f_0^2 \times 2^A v$, $b = b_0 \times 2^B v$, $s = s_0 \times 2^S v$, $- - -$ Also by definition these can be expressed as: $$T = T_0 \times 2^{N_V}$$, $f^2 = f_0^2 \times 2^{N_V}$, $b = b_0 \times 2^{N_V}$, $s = s_0 \times 2^{N_V}$, - - - - The table contains values of each of the various photographic factors and a column headed N_V . The numerical values of the factors are presented in increasing or decreasing steps that correspond to a change in N_V of 0.25 which represents a 25-percent change in exposure or in photographic terminology a quarter stop. The numerical values of the photographic factors in the table were obtained by multiplying the base value of the factor by $2^N v$. The values thus obtained were somewhat rounded either by dropping figures of no significance or by shifting to standard numbering. The numbers presented closely represent geometric progression of the values. The numbers in the columns corresponding to whole numbers of $\,N_V\,$ from 0 to 10 for incident light, film speed, exposure time, and f/number duplicate in almost all cases those of references 1 and 2. The luminance values in candles/ft² of reference 2 are somewhat lower and the differences correspond to a decrement in reflectance of 2 percent. The table applied to the equations are derived herein and are summarized as follows: For general photography equation (4) is: $E_v = T_v + A_v + X_v = B_v + S_v - C_v$. To obtain values for equation (4) from the table use: $E_V = N_V$ for $T + N_V$ for $f + N_V$ for $x = N_V$ for $b + N_V$ for $s - N_V$ for c. For photoflash using an efficient reflector equation (6) is: $G_v = A_v + D_v = F_v + S_v$. To obtain values for equation (6) from the table use: N_V for $G=N_V$ for $f+N_V$ for $D=N_V$ for L_D+N_V for s. For electronic flash equation (8) is: $G_V = A_V + D_V = Q_V + S_V$. When using the table for equation (8) adopt this procedure: N_V for $G=N_V$ for $f+N_V$ for $D=N_V$ for $Q+N_V$ for s. The photoflash equation (6) is for open flash with exposures of 1/30 second or longer for X or M synchronization. Shorter exposure times can be used with M synchronized shutters if the following correction is deducted from the flash value: t $$1/30$$ $1/60$ $1/125$ $1/250$ $\Delta F_{\rm V}$ 0 0.5 1.0 1.5 Thus for M-synchronization equation (6) becomes $$G_v = A_v + D_v = F_v - \Delta F_v + S_v$$ Examples of application of equation (4). A camera was used to photograph a luminous object. A correct exposure was obtained on a film having a speed rating of 200 ASA with the lens at f/32 using two filters having filter factors of 10 and 4. The exposure time was 1/200 second. To estimate what filter factor to use in obtaining motion pictures on an ASA 160 film at 1/3600 second (278 µsec) exposure at the same f/number of 32 $$t = 1/200$$ $f/32$ $x = 10$ and 4 $s = 200$ $$T_V = 7\frac{3}{4}$$ $A_V = 10$ $X_V = 3\frac{1}{4} + 2$ $S_V = 6$ $$E_v = 23$$ $B_v = 23 - 6 = 17$ $b = 46,000$ candles/ft² $$t = 278 \mu sec$$ $f/32$ $b = 46,000$ $s = 160$ $$T_V = 11\frac{3}{h}$$ $A_V = 10$ $B_V = 17$ $S_V = 5\frac{3}{h}$ $t = 0.05 \ \mu sec$ $T_V = 27\frac{1}{2}$ $$E_{\mathbf{V}} = 22\frac{3}{h}$$ $$X_v = 22\frac{3}{h} - 21\frac{3}{h} = 1$$ $$x = 2$$ A Kerr cell camera was used to obtain a photograph at f/8 on ASA 3000 film at an exposure of 0.1 $\mu sec.$ The transmittance of the cell is 10 percent. If the aperture is limited by the Kerr cell to f/4.5 what is the least exposure time permitted? In another case with a light amplification system having an amplification factor of 2 what aperture would be used at 0.05 μsec exposure? It is assumed that reciprocity effects are constant within the range of exposure time (0.1 to 0.05 μsec). t = 0.1 $$\mu$$ sec f/8 s = 3000 c = 10% $T_V = 23\frac{1}{4}$ $A_V = 6$ $S_V = 10$ $C_V = 3\frac{1}{4}$ $E_V = 29\frac{1}{1}$ for f/4.5 $$A_V = 4\frac{1}{4}$$ $T_V = 25$ $t = 0.03 \ \mu sec$ least time. $E_V = 29\frac{1}{4}$ $B_V + S_V = 29\frac{1}{4} + 3\frac{1}{4} = 32\frac{1}{2}$. An amplification of two corresponds to a transmittance of 200% or a $C_{\rm V}$ = -1. $$B_V + S_V - C_V = 32\frac{1}{2} + 1 = 33\frac{1}{2} = E_V$$ $t = 0.05 \ \mu sec$ $T_V = 27\frac{1}{2}$ $$A_{V} = E_{V} - T_{V} = 6$$ The aperture would be eight. #### REFERENCES - 1. Photo Lab. Index Morgan and Morgan Inc. - Neblette, C. B.: Photography Its Materials and Processes. Sixth Edition, Lancaster Press, Inc., 1962, pp. 138-142. - Kodak Tid Bits. A Kodak Publication for Scientists and Engineers, No. 1, 1965. - 4. Edgerton, Dr. Harold E., and Andrus, Dean: Tungsten Flash Lamps. Paper presented at the 4th Annual Technical Symposium of the SPIE, Aug. 5, 1959. Also in the SPIE Newsletter, January 1960. | | | | | | | | | | | | • | |--------------------|-------------------------------------|----------------------------------------|--------------|----------------|-----------------------------------------------------|----------------------------|-------------------------|------------------------|--------------|----------------------------------|------------------------| | 2 ^N v | Transmit-
tance
c,
percent | Elec-
tronic
flash
Q,
BCPS | | | Reflected
light
b,
candles/ft ² | Film
speed
s,
ASA | N _V
value | | f,
f/no. | D or G
ft. or
Guide
No. | Filter
factor,
x | | 0.0625 | 1600 | | 0.78 | 0.39 | 0.022 | 0.20 | -4 | 16 | 0.25 | 0.25 | | | .0744 | 1345 | | •93 | .46 | .026 | .23 | | 13.5 | .27 | .27 | | | . 0884 | 1130 | | 1.1 | -55 | .031 | .28 | •5 | 11.3 | .30 | .30 | Ì | | .1052 | 950 | | 1.3 | .66 | .037 | -33 | į | 9.5 | .32 | .32 | l | | .1250 | 800 | | 1.5 | .78 | • Oft # | -39 | -3 | 8 | -35 | •35 | | | .1487 | 673 | | 1.8 | .93 | .052 | .46 | ļ | 6.7 | .38 | .38 | | | .1768 | 565 | | 2.2 | 1.1 | .062 | •5
•7 | •5 | 5.7 | .42 | .42 | I | | .2103 | 475 | ļ | 2.6 | 1.3 | . 074 | -7 | _ | 4.8 | -45 | -45 | 1 | | .250 | 400 | | 3.1 | 1.6 | . 088 | .8 | -2 | 4 | .50 | .50 | | | •2973 | 336 | <u>'</u> | 3.7 | 1.9 | .10 | .9 | _ | 3.4 | •55 | -55 | | | .3536 | 283 | | 4.4 | 2.2 | .12 | 1.1 | •5 | 2.8 | •59 | -59 | | | .4205 | 238 | | 5.3
6.2 | 2.6 | .15
.18 | 1.3 | ٦. | 2.4 | .65 | .65 | | | .500
.5946 | 200
168 | | 7.4 | 3.1
3.7 | .21 | 1.6 | -1 | 2 | .71
.77 | .71 | | | .7071 | 141 | | 8.8 | 7.1
4.4 | .25 | 2.2 | _ | 1.4 | -84 | .77
.84 | | | .8409 | 119 | | 10.5 | 5.3 | •29
•30 | | •5 | 1.2 | .92 | .92 | | | 1 | 100 | 5 | 12 | 6 | • 50 | 2.6 | 0 | 1 | 1 | 1 1 | | | 1.189 | 84 | <u>5</u> | 15 | 7 | •35
•42 | 3
4 | U | 1/1.2 | 1.1 | 1.1 | 1 0 | | 1.414 | 70.7 | 7 | 18 | 9 | •50 | 4 | •5 | | 1.2 | 1.2 | 1.2
1.4 | | 1.682 | 60 | 8 | 21 | 10 | •59 | | •) | 1/1.7 | 1.3 | 1.3 | 1.4 | | 2 | 50
50 | 10 | 25 | 12 | .70 | 5
6 | 1 | 1/2 | 1.4 | 1.4 | 2.0 | | 2.378 | 42 | 12 | 30 | 15 | .84 | 7 | | 1/2.4 | 1.5 | 1.5 | 2.4 | | 2.828 | 35 | 14 | | 17 | •99 | 9 | .5 | 1/2.8 | 1.7 | 1.7 | 2.8 | | 3.364 | 30 | 17 | 35
42 | 21 | 1.18 | ıí | • / | 1/3.4 | 1.8 | 1.8 | 3.4 | | 4 | 25 | 20 | 50 | 25 | 1.40 | 13 | 2 | 1/4 | 2 | 2 | 4.0 | | 4.757 | 21 | 24 | 59 | 29 | 1.67 | 15 | | 1/4.8 | 2.2 | 2.2 | 4.8 | | 5.657 | 18 | 28 | 70 | 35 | 2.0 | 18 | -5 | 1/5.7 | 2.4 | 2.4 | 5.7 | | 6.727 | 15 | 34 | 84 | 42 | 2.4 | 21 | | 1/6.7 | 2.6 | 2.6 | 6.7 | | 8 | 12 | 40 | 100 | 50 | 2.8 | 25 | 3 | 1/8 | 2.8 | 2.8 | 8 | | 9.514 | 10 | 48 | 119 | 56 | 3.3 | 30 | | 1/9.5 | 3.0 | 3.0 | 9.5 | | 11.314 | 8.8 | 57 | 141 | 70 | 4.0 | 36 | •5 | 1/11.3 | 3.4 | 3.4 | 11.3 | | 13.455 | 7.4 | 67 | 168 | 84 | 4.7 | 42 | | 1/13.5 | 3.7 | 3.7 | 13.5 | | 16 | 6.2 | 80 | 200 | 100 | 5.6 | 50 | 4 | 1/16 | 4.0 | 4.0 | 16 | | 19.027 | 5.3 | 95 | 238 | 119 | 6.7 | 59 | | 1/19 | 4.4 | 4.4 | 19 | | 22.627 | 4.4 | 113 | 283 | 142 | 8.0 | 71 | -5 | 1/23 | 4.8 | 4.8 | 22.6 | | 26.910 | 3.7 | 135 | 336 | 168 | 9.5 | 84 | _ | 1/27
1/30 | 5.2 | 5.2 | 26.9 | | 32
38.054 | 3.1 | 160 | 400 | 200 | 11.2 | 100 | 5 | 1/28 | 5.6 | 5.6 | 32 | | 45.25 | 2.6
2.2 | 190
226 | 476
566 | 238
283 | 13.4
16 | 119
141 | _ | 1/38
1/45 | 6.2
6.7 | 6.2 | 38 | | 53.82 | 1.9 | 269 | 566
673 | 205 | | 168 | •> | 1/54 | | 6.7 | 45 | | 64 | 1.6 | 209
320 | 800 | 336
400 | 19
23 | 200 | 6 | 1/60 | 7.3
8.0 | 7.3
8.0 | 54
64 | | 76.11 | 1.3 | 381 | 952 | 476 | 27 | 238 | | 1/76 | 8.7 | 8.7 | 76 | | 90.51 | 1.1 | 453 | 1,132 | 556 | 32 | 283 | .5 | 1/90 | 9.5 | 9.5 | 90 | | 107.64 | | 538 | 1,346 | 672 | 38 | 336 | ./ | 1/90
1/108 | 10.4 | 10.4 | 107 | | 128 | .9
.8 | 640 | 1,600 | 800 | 45 | 400 | 7 | 1/125 | 11.3 | 11.3 | 128 | | 152.22 | .7 | 761 | 1,903 | 952 | 53 | 476 | | 1/152
1/181 | 12.3 | 12.3 | 152 | | 181.02 | .6 | 905 | 2,262 | 1,131 | 64 | 566 | .5 | 1/181 | 13.5 | 13.5 | 181 | | 215.27 | .5 | 1,076 | 2,690 | 1,345 | 75 | 672 | | 1/215 | 14.7 | 14.7 | 215 | | 256 | •5
•4 | 1,280 | 3,200 | 1,600 | 90 | 800 | 8 | 1/250 | 16.0 | 16.0 | 256 | | 304.4 | .3 | 1,522 | 3,808 | 1,904 | 107 | 952 | 7 | 1/304 | 17.4 | 17.4 | 304 | | 362.0 | .2 | 1,812 | 4,526 | 2,262 | 127 | 1,131 | -5 | 1/362 | 19.0 | 19.0 | 362 | | 430.5 | .2 | 2,152 | 5,380 | 2 , 690 | 151 | 1,343 | | 1/430 | 20.7 | 20.7 | 430 | | 512.0 | .2 | 2,560 | 6,400 | 3,200 | | 1,600 | | 1/500 | 22.6 | 22.6 | 512 | | 608.9 | .2 | 3,045 | 7,610 | 3,808 | 214 | 1,904 | _ | 1/609 | 24.7 | 24.7 | 609 | | 724.1 | .1 | 3,620 | 9,050 | 4,525 | | 2,263 | •5 | 1/724 | 26.9 | 26.9 | 724 | | 861.1 | .1 | 4,305 | 10,760 | 5,380 | | 2,690 | | 1/861
1/1000 | 29.3 | 29.3 | 861 | | 1,024.0 | .1 | | 12,800 | 6,400 | 360 | 3,200 | | 1/1000
821 ц | 32.0 | 32.0 | 1,024 | | 1,217.7
1,448.1 | .08 | 6,090 | 15,220 | 7,610 | 428 | 3,805 | _ | 691 | 34.9
ze 1 | 34.9 | 1,218 | | 1,722.1 | .07 | 7,240
8,610 | 18,120 | 9,060 | 510
605 | 4,530
5, 3 80 | •2 | 581 | 38.1
41.5 | 38.1
41.5 | 1,448 | | ٠٠١ و٠ | .00 | 0,010 | 21,520 | 10,760 | رن | ا تارور | ļ | <i></i> | 71.0 | サエ・ブ | 1,722 | | | | | | | | | | | | | | | | | | | | r | | | т | | | ~ | |--------------------------|------------|---------------------|------------------|--------------------|--------------------|------------------|------------------|------------|--------------------|-----------------------|----------------| | | Transmit- | Elec- | Photo- | Incident | Reflected | Film | | | | | | | $_{2}$ N $_{\mathbf{v}}$ | tance | tronic | flash | light | light | speed | $N_{\mathbf{v}}$ | t, | f, | D or G | | | | с, | flash | L, | $b \times \pi/r$, | ъ, | s, | value | sec | f/no. | ft. or | factor, | | | percent | Q,
BC P S | lumen-sec | ft-candle | candles/ft2 | ASA | | | <i>'</i> | Guide | х | | 0.010 | | 1010 | | | | | | | | No. | | | 2,048.0 | 0.05 | 10,240 | 25 , 600 | 12,800 | 720 | 6,400 | 11 | 488 μ | 45.3 | 45.3 | 2,048 | | 2,435.5 | •04 | 12,180 | 30,450 | | 856 | 7,610 | | 411 | 49.3 | 49.3 | 2,435 | | 2,896.3 | •03 | 14,490 | 36 , 200 | | 1,018 | 9,050 | •5 | 345 | 53.8 | 53.8 | 2,896 | | 3,444.3 | .03 | 17,220 | 43,050 | 21,520 | 1,210 | 10,760 | | 290 | 58.7 | 58.7 | 3,444 | | 4,096.0 | •02 | 20,500 | 51,200 | 25,600 | 1,440 | 12,800 | 12 | 244 | 64.0 | 64.0 | 4,096 | | 4,871.0 | •02 | 24,350 | 60,900 | 30,450 | 1,711 | 15,220 | _ | 205 | 69.8 | 69.8 | 4,871 | | 5,792.6 | •02 | 28,970 | 72,400 | 36,200 | 2,035 | 18,100 | •5 | 173 | 76.1 | 76.1 | 5,792 | | 6,888.7 | •01 | 34,460
40,950 | 86,100 | | 2,420 | 21,520 | 1 7 7 | 145 | 83.0 | 83.0 | 6,889 | | 8,192
9,742 | •01
•01 | 48,700 | 102,400 | | 2,880
3,425 | 25,600
30,450 | 13 | 122
103 | 90.5
98.7 | 90.5
98.7 | 8,192
9,742 | | 11,585 | .008 | 57,900 | 144,900 | | 4,075 | 36 , 220 | .5 | | 107.6 | 107.6 | 11,585 | | 13,777 | .007 | 68,860 | 172,200 | 86,100 | 4,840 | 43,050 | • • • • | 72.6 | 117.4 | 117.4 | 13,777 | | 16,384 | .006 | 81,900 | 204,900 | 102,500 | 5,760 | 51,200 | 14 | 61.0 | 128.0 | 128.0 | 16,384 | | 19,484 | .005 | 97,400 | 243 , 500 | 121,800 | 6,850 | 60,900 | 14 | 51.4 | 139.6 | 139.6 | 19,484 | | 23,170 | •004 | 115,900 | 289,700 | 144,900 | 8,145 | 72,400 | .5 | 43.2 | 152.2 | 152.2 | 23,170 | | 27,555 | .004 | 126,500 | 344,600 | 172,300 | 9,690 | 86,150 | •/ | 36.3 | 166.0 | | 27,555 | | 32,768 | .003 | 163,800 | | 204,800 | 11,510 | 102,400 | 15 | 30.5 | 181.0 | 181.0 | 32,768 | | 38,968 | .003 | | 487,000 | 243,500 | 13,700 | 121,700 | | 25.7 | 197.4 | 197.4 | 38,968 | | 46,341 | .002 | | 579,000 | 289,800 | 16,290 | 144,800 | .5 | 21.6 | 215.3 | 215.3 | 46,340 | | 55,109 | •002 | | 688,600 | 344,400 | 19,360 | 172,200 | | 18.1 | 234.8 | 234.8 | 55,109 | | 65,536 | .002 | | 819,000 | 409,500 | 23,030 | 204,800 | 16 | 15.3 | 256.0 | 256.0 | | | 77,935 | .001 | | 974,000 | 487,000 | 27,400 | 243,500 | | 12.8 | 279.2 | 279.2 | 77,935 | | 92,681 | .001 | | 1,159,000 | 579,500 | 32,600 | 289,800 | .5 | 10.8 | 304.4 | 304.4 | 92,681 | | 110,218 | .001 | | 1,265,000 | | 35,600 | 316,500 | | 9.9 | 332.0 | 332.0 | 110,218 | | 131,072 | •0008 | | 1,638,000 | 819,000 | 46,080 | 409,800 | 17 | 7.6 | 362.0 | 362.0 | 131,072 | | 155,871 | •0006 | | 1,948,000 | 974,000 | 54,800 | 487,000 | | 6.4 | 394.8 | 394.8 | 155,871 | | 185,362 | .0005 | | | 1,159,000 | 65,180 | 578,500 | •5 | 5.4 | 430.5 | 430.5 | 185,362 | | 220,437 | .0005 | | | 1,377,000 | 77,400 | 688,000 | | 4.5 | 469.5 | 469.5 | 220,437 | | 262,144 | • 0004 | | | 1,639,000 | 92,200 | 819,500 | 18 | 3.8 | 512.0 | 512.0 | 262,144 | | 311,742 | .0003 | | | 1,948,000 | 109,500 | 974,000 | _ | 3.2 | 558.3 | 558.3 | | | 370,724 | •0003 | | 4,630,000 | 2,318,000 | 130,400 | 1,159,000 | •5 | 2.7 | 608.9 | 608.9 | | | 440,874 | .0002 | | 5,510,000 | 2,755,000 | 155,000 | | 1,0 | 2.3 | 664.0 | 664.0 | | | 524,288
623,483 | .0002 | | | 3,276,000 | 184,250 | | 19 | 1.9 | 724.1
789.5 | 724.1 | | | 741,448 | .0002 | | 1, 190,000 | 3,899,000 | 219,200
260,700 | | .5 | 1.35 | 861.1 | 789.5
861.1 | | | 881,748 | .0001 | | | | 309,900 | | 1 . | 1.13 | 939.0 | 939.0 | | | 1,048,576 | .00010 | | | | 368,900 | | 20 | •95 | 1,024 | 1,024 | 1 | | 1,246,967 | .00008 | | | | 438,300 | | | .80 | | 1,116.7 | | | 1,482,897 | .00007 | | | | 1,50,500 | ļ | •5 | .674 | | | | | 1,763,495 | .00006 | | | 1 | | | , , | | 1,327.9 | 1.327.9 | | | 2,097,152 | .00005 | | | | | | 21 | 477 | 1,448.1 | 1,448.1 | | | 2,493,933 | .00004 | | | | | | İ | .401 | 1,579.0 | 1,579.0 | | | 2,965,792 | •00003 | | | | | | .5 | •337 | 1,722.2 | 1,722.2 | | | 3,526,990 | .00003 | | | | | | | .283 | 1,878.0 | 1,878.0 | ! | | 4,194,304 | •00002 | | | | L | | 22 | .238 | 2,048.0 | 2,048.0 | | | 4,987,866 | .00002 | | | | | i | | .200 | 2,233.3 | 2,233.3 | | | 5,931,585 | .00002 | | | | 1 | | •5 | 169 | 2,435.5 | 2,435.5 | | | 7,053,980 | .00001 | | | | | 1 | 0- | .142 | 2,655.8 | 2,655.8 | | | 8,388,608 | •00001 | | | | <u> </u> | ļ | 23 | 1 175 | 2,896.3 | 2,096.3 | | | 9,975,733
11,863,169 | .00001 | | | | | 1 | _ | 1.700 | 3,158.0
3,444.3 | 2 1010 ~ | | | 14,107,961 | .00001 | | | | | | •5 | .004 | 756 0 | 12,444.5 | | | 16,777,216 | .00001 | | | | | | 24 | .0(1 | 3,756.0
4,096.0 | D, 100.0 | | | 19,951,465 | .00001 | | | | | | | 051 | 4,466.7 | 1, 1,66 7 | | | 23,726,339 | .00001 | | 1 | | | † | .5 | בינט. | 4,871.0 | 14,400. (
14,871 A | | | 28,215,922 | .00001 | | | | | | 1 . | .036 | 5,311.7 | 5.311 7 | | | 33,554,432 | .00001 | | | | | | 25 | .030 | 5,792.6 | 5.792.6 | | | 39,902,931 | .00001 | | 1 | <u> </u> | † | 1 | 1 | .025 | 6,316.0 | 6.316.0 | | | 47,452,678 | .00001 | | | | | | İ | .021 | 6,888.7 | 6.888.7 | - | | 56,431,844 | .000002 | | | 1 | | | 1 | .018 | 7,512.1 | 7,512.1 | | | | | | | 1 | | 1 | 26 | .015 | | ' | | | | | 1 | | | | | T | .012 | | | | | | | | | 1 | | | | .010 | | | | | | | 1 | | | | | 1 | .009 | | | | | | | | | L | | | 27 | .007 | | | \perp | | | | | | | | | | .006 | | | | | | } | 1 | | | | | | .005 | | | | | | 1 | 1 | | | | | | • 00/1 | | | | | | | | | Į. | | | 28 | | | | | | <u></u> | J | L | 1 | L | <u> </u> | L | <u> </u> | 1 | l | <u> </u> | 1 | | | | | | | | | | | | | |